Andrew Chen Archives

Subscribe · Featured · Recent · The Cold Start Problem 📘
Dear readers, I have moved to Substack and I will be writing here from now on:
In the meantime, I will leave up for posterity. Enjoy!

How to measure if users love your product using cohorts and revisit rates

Do users really love your product?

If they did, how would you be able to tell?

I would argue that the single most telling metric for a great product is how many of them become dedicated, repeat users. This angle of thinking naturally leads to a number of metrics around user retention, which we’ll examine in this blog post.

User retention is especially important for social web products. Failure to consider the backend retention of a userbase can lead to catastrophic results – in particular, without the proper mechanics in place, it’s easy to hit the “shark fin” user curve, as well as the death spiral caused by reverse Metcalfe’s Law. In both cases, once the core audience of a site starts to erode, then the erosion can cause a negative feedback loop that causes the entire audience to fall away.

This raises a series of questions:

  • What are the right metrics to track for user retention?
  • (And as a corollary, what are the wrong ones?)
  • What is a “good” retention number? What are bad retention numbers?
  • How do you optimize and improve retention rates?

Let’s tackle these below.

Retention versus Engagement
First off, there’s an important distinction between engagement versus retention, which some folks often track in one bucket. I generally define retention is simply the act of getting users BACK to revisit, regardless of their actual activity on the site. Contrast this with engagement, which measures how much time they spend with the product, how many features they interact with, etc.

An implication of this is that the right metric to follow is visits rather than something like pageviews or time-on-site.

Here are a couple examples of the separation of engagement versus retention:

  • Google is a high retention, low engagement site
  • MySpace is a high retention, high engagement site
  • News sites are often medium/high retention, low engagement sites (like checking a headline)
  • etc.

Note the important point that engagement doesn’t necessarily correlate with monetization. Because many retail sites and reference properties are transactional in nature, oftentimes this implies that the closer you are to the money, the lower the engagement is.

Keep this in mind for people who espouse “addictiveness” and “engagement” as virtues for social media sites.

Retention versus Acquisition
Secondly, there’s the important issue of how to disambiguate newly acquired users from retained users. The problem with a traffic graph that’s going up-and-to-the-right is that it’s not clear what’s really happening – is the site bringing in lots of new users? Or is there a bunch of dedicated users that are extended their engagement? You need to figure out which of 4 scenarios are actually happening, which I’ve blogged previously about:

  1. Pageviews are coming ONLY from new users
  2. Pageviews are coming ONLY from one generation of users (like early adopters)
  3. Pageviews are coming ONLY from retained users
  4. Pageviews are coming from new users and retained users

The proper way to disambiguate retention from acquisition is to precisely track the following stats:

  • How many new users are joining the site?
  • Of these new users, what are the different funnels they are joining from? (be it SEO, direct navigation, etc.)

Then you separate out these users completely from the aggregate numbers, and the remaining folks you have left are ones who are coming back to the site. You can then further segment this group by cohort, which we’ll discuss below.

Building your first retention table: User cohorts vs Revisit rates
Using the points from above, you can now build a retention table that compares how many users are coming back. This table starts with three columns:

  • Time period the user joined
  • Number of users that joined that period
  • Revisit percentage rate

The reason why you separate it out into cohorts is that it gives the ability to compare performance of the site over time. As new product features are added, ideally the revisit rates would also continue to rise.

Let’s put this together in a table, imagining that we’re at Week 5:

Time period
User count Revisit rate
Week 1
(4 wks ago)
1000 28%
Week 2
(3 wks ago)
1100 26%
Week 3
(2 wks ago)
1210 23%
Week 4
(1 wk ago)
1331 15%
Week 5
1464 0%

A couple points on the above table:

  • Looking back as Week 5, you can see that Week 1 is now the “oldest” cohort, and those users have had many weeks to revisit the site
  • The overall userbase is growing 10% per week, starting with an initial userbase of 1000
  • The revisit rate is naturally <100% since whatever initial cohort you start out with, it can only decrease but not increase
  • Note that the retention rate of the site seems to be around 30%, although you’d want to let the Week 1 cohort run for a while and see if it eventually stabilizes
  • Week 5 is currently at 0% since in this example the week just started and no users have revisited yet
  • The actual number of visits on any given day is weird to calculate using this table, since the view is not based on aggregate numbers

The key metric is really the number that the revisit rate converges to. You can use this number in your traffic models to understand whether you should be focused on acquiring new users, or if you can simply focus on extending the engagement levels of your site.

What’s your revisit rate? (Using Google Analytics to approximate it)
Google Analytics gives you an overall number for free, with some caveats. You can access this feature on the lefthand nav through “Visitors”, then “New vs. Returning.” Basically this is an OK approximation of the revisit rate, as long as you:

  • Maximize the window in which you are doing the analysis (ideally starting the analytics window when the site was first made public), otherwise the numbers will skew high since you’ll be counting too many dedicated users
  • Ideally, the site would isn’t adding exponentially more users every day, since it would skew lower because newer users are less likely to have returned

Essentially there’s some skew that comes into play since Google Analytics doesn’t let you segment your users based on when they first joined the site.

Willing to share?
For readers who are willing to share the numbers on their site, please comment below and if I get enough responses I’ll do a followup blog post on the subject.

Like this blog?
If you did, please recommend it to a colleague and/or click here to get updates via email or RSS.

PS. Get new updates/analysis on tech and startups

I write a high-quality, weekly newsletter covering what's happening in Silicon Valley, focused on startups, marketing, and mobile.

Views expressed in “content” (including posts, podcasts, videos) linked on this website or posted in social media and other platforms (collectively, “content distribution outlets”) are my own and are not the views of AH Capital Management, L.L.C. (“a16z”) or its respective affiliates. AH Capital Management is an investment adviser registered with the Securities and Exchange Commission. Registration as an investment adviser does not imply any special skill or training. The posts are not directed to any investors or potential investors, and do not constitute an offer to sell -- or a solicitation of an offer to buy -- any securities, and may not be used or relied upon in evaluating the merits of any investment.

The content should not be construed as or relied upon in any manner as investment, legal, tax, or other advice. You should consult your own advisers as to legal, business, tax, and other related matters concerning any investment. Any projections, estimates, forecasts, targets, prospects and/or opinions expressed in these materials are subject to change without notice and may differ or be contrary to opinions expressed by others. Any charts provided here are for informational purposes only, and should not be relied upon when making any investment decision. Certain information contained in here has been obtained from third-party sources. While taken from sources believed to be reliable, I have not independently verified such information and makes no representations about the enduring accuracy of the information or its appropriateness for a given situation. The content speaks only as of the date indicated.

Under no circumstances should any posts or other information provided on this website -- or on associated content distribution outlets -- be construed as an offer soliciting the purchase or sale of any security or interest in any pooled investment vehicle sponsored, discussed, or mentioned by a16z personnel. Nor should it be construed as an offer to provide investment advisory services; an offer to invest in an a16z-managed pooled investment vehicle will be made separately and only by means of the confidential offering documents of the specific pooled investment vehicles -- which should be read in their entirety, and only to those who, among other requirements, meet certain qualifications under federal securities laws. Such investors, defined as accredited investors and qualified purchasers, are generally deemed capable of evaluating the merits and risks of prospective investments and financial matters. There can be no assurances that a16z’s investment objectives will be achieved or investment strategies will be successful. Any investment in a vehicle managed by a16z involves a high degree of risk including the risk that the entire amount invested is lost. Any investments or portfolio companies mentioned, referred to, or described are not representative of all investments in vehicles managed by a16z and there can be no assurance that the investments will be profitable or that other investments made in the future will have similar characteristics or results. A list of investments made by funds managed by a16z is available at Excluded from this list are investments for which the issuer has not provided permission for a16z to disclose publicly as well as unannounced investments in publicly traded digital assets. Past results of Andreessen Horowitz’s investments, pooled investment vehicles, or investment strategies are not necessarily indicative of future results. Please see for additional important information.